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Abstract. The envelopes of the overall conductivities of effective medium intergranularly
random and completely random polycrystalline aggregates are compared with the available
bounds on the polycrystals’ properties. The geometrically realizable models cover the major
parts of the property ranges permitted by the bounds, hence the estimates represent the behaviour
of realistic random aggregates well, given the uncertainty in the shapes of constituent crystals.

1. Introduction

Most practical heterogeneous media are of random nature. Take a single-phase polycrystal,
which is a random aggregate of crystalline grains.Randomnessin the sense here is much
more definite than the uncertainty ofarbitrariness. For example, an arbitrary aggregate of
anisotropic crystals can have a wide range of overall properties, including the anisotropic
ones, while the randomness should imply, among other characteristics, the macroscopically
isotropic appearance of an aggregate [1]. The random cubic resistor network of Kirkpatrick
[2], in which the bonds are assigned different conductivities randomly, has quite definite
overall behaviour independent of the particular samples taken, provided that the samples are
sufficiently large in comparison with the inhomogeneities (here the bonds). The properties
of different bonds in the network are completely uncorrelated, or in other words, the
correlation is restricted to within a single bond. The crystalline and shape orientations,
respectively, of different grains in a random aggregate are uncorrelated, or in other words,
the correlation is restricted to within a single grain. We will refer to such a realistic
aggregate as anintergranularly random polycrystal. In certain circumstances, the relative
crystalline and shape orientations within a single grain are also uncorrelated. We will refer
to that smaller class of random aggregates ascompletely random polycrystals. However, as
distinct from the random cubic network, which is based on a definite idealisticskeleton(the
cubic network geometry), a realistic random polycrystal is formed from grains having all
possible irregular shapes. That uncertainty in the base skeleton (the grains’ configuration)
should result in some uncertainty in the observed overall properties of random polycrystalline
aggregates. Evaluation of thosescatter intervalsfor the effective conductivity of the realistic
intergranularly random and completely random polycrystals should be of theoretical and
practical interest.

There are certain upper and lower bounds constructed theoretically somewhere, the
effective property of any aggregate should fall strictly between them. Here we would
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like to specify the validity of those bounds with respect to the two realistic classes of
integranularly random and completely random polycrystals stated above. Another question
is how good are the bounds for a class of aggregates, i.e. if the effective properties of the
aggregates within the class may scatter on the whole interval between the bounds or they
may cover only a much smaller interval, or they might even converge to unique values like
those of the random cubic network of Kirkpatrick [2]? Here we are interested in the specific
geometries, the effective properties of which can be determined exactly. The envelopes of
the properties (formed from the greatest and smallest properties) should give us additional
information about the possible scatter interval for the property, besides that of the bounds:
while the interval between the upper and lower bounds is larger and contains the scatter
interval, the interval between the upper and lower envelopes of realizable geometries is
smaller and belongs to that scatter interval.

2. Realizable EM models versus the bounds

It is known [3–6] that the effective conductivityσe of any macroscopically isotropic
aggregate of crystals should be bounded by certain estimates expressed exclusively through
the principal conductivitiesσ1, σ2, σ3 of the basic crystal. The upper arithmetic average
bound is very simple

σe 6 σuav = (σ1+ σ2+ σ3)/3 (1)

while the lower bound of Schulgasser [4] and Avallanedaet al [5], in the case of a uniaxial
basic crystal (σ2 = σ3), can also be given explicitly

σe > σ lSACLM = 1
2[(σ 2

1 + 8σ1σ2)
1/2− σ1]. (2)

Thosebounds for isotropic polycrystals(i.e. any aggregate, including the non-random
one, that has a macroscopically isotropic property) are attained by certain locally-ordered
configurations and therefore are verified to be the optimal ones. The class of realistic
intergranularly random polycrystals, which also have isotropic properties, should be smaller
than that of all the isotropic ones, so its uncertainty interval for the effective conductivity
should be smaller. How small it would be? We will construct envelopes of certain realizable
intergranularly random aggregates, which provides aninside estimatefor the interval, and
compare it with theoutside estimate(1) and (2).

For the subclass of realistic completely random polycrystals, tighter bounds have been
constructed. Based on the hypothesis that certain tensors, which reflect the relative shape
and the crystalline orientations of constituent crystals, should be isotropic [7], one can
derive the estimates known as Hashin–Shtrikman bounds [8, 9] which are much tighter than
the bounds for isotropic polycrystals. By exploring the equiaxity of the polycrystals and
the interpolation between the Hashin–Shtrikman and Avelanedaet al bounds [5], Helsing
[10, 11] further improved the bounds. Using, in addition to the isotropy hypothesis, the
assumption that an interchange of the places between any two sets of crystals having different
crystalline orientations in a random aggregate should not alter the effective conductivity of
the polycrystal, we derived estimates [7], which appear the best available shape-independent
bounds for completely-random polycrystals over most ranges of parametersσ1, σ2, σ3. Those
estimates, referred to also as thebounds for symmetrically random(or disordered, or
perfectly random) polycrystals, in the case of a uniaxial basic crystal (σ2 = σ3), reduce
to

P(2σu0 ) = σuP > σc > σ lP = P(2σ l0) (3)
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where

P(2σ0) = 3

(
1

σ1+ 2σ0
+ 2

σ2+ 2σ0

)−1

− 2σ0

σu0 =
{
(σ1+ 2σ2)/3 if σ1 6 σ2

(7σ1+ 13σ2)/20 if σ1 > σ2

σ l0 =
{

3/(1/σ1+ 2/σ2) if σ1 > σ2

20/(7/σ1+ 13/σ2) if σ1 6 σ2.

Comparisons of different available bounds are given in [7]. Though the bounds (3) tell
us that an effective property should lie betweenσup andσ lp, they would not confirm that the
effective property of a completely random polycrystal can be as high asσup , or as low as
σ lp, in other words, the bounds may be not the best possible ones for completely random
polycrystals and can still be made narrower. Here we will construct an inside estimate of the
uncertainty interval for completely random polycrystals as envelopes of certain realizable
models, and compare it with the outside estimate (3).

Among various approximation schemes for the effective properties of heterogeneous
media, the most successful one is the effective medium approximation (referred to also as
the coherent potential approximation in the theory of electronic states in disordered alloys)
[12–19]. For the approximation, each inhomogeneity is considered equally as a spherical
(ellipsoidal, or generally, of any shape) particle embedded in a homogeneous medium with
unknown effective property, so the fields inside it can be evaluated from the respective dilute
suspension problem. Then a summation of the fields in the inhomogeneities should yield
the self-consistent equation determining an effective property of the aggregate. The scheme
agreed with many observations and is especially suitable for a description of the behaviour of
random polycrystals. Moreover, the effective medium approximation is a realizable scheme,
becomes exact for certain hierachical geometries, and, by construction, can represent certain
intergranularly random and completely random aggregates. Presume that a dilute suspension
of a basic crystal having principal conductivitiesσ1, σ2, σ3 and certain shape with volume
fraction dv in an isotropic matrix of conductivityσ = diag{σ, σ, σ } has the effective
conductivityσ + dσ

σ + dσ = σ + dvD(σ,σR) (4)

whereσR = RtσbR,σb = diag{σ1, σ2, σ3},R is an orthogonal matrix determining the
relative orientation of the principal conductivity directions with respect to a local system
of coordinates fixed with the shape of the basic crystal. According to the procedure of the
effective medium approximation, the effective conductivityσe of the aggregate is determined
from the self-consistent equation

〈trace{OtD(σe,σR)O}〉O = 0 (5)

where〈·〉O denotes the average over the rotationsO (distributed equally over all directions
in the space) of the basic crystal. In case the crystalline and shape orientations within a
basic crystal are uncorrelated, we get the equation (the average is taken over all uncorrelated
orientationsO andR)

〈trace{OtD(σe,R
tσbR)O} >O,R= 0. (6)

The aggregates with the effective conductivity determined by (5) are calledEM (effective
medium) intergranularly random polycrystals, while those by (6) will be namedEM
completely random polycrystals. Equations (5) and (6) can be made explicit for aggregates
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Figure 1. Bounds and envelopes of realizable models for aggregates of uniaxial crystals:
σ2 = σ3 is normalized to be 1,σ1 = 2→ 20; the upper (1) and lower (2) bounds compared
with the upper and lower envelopes of (8) for integranularly random polycrystals; the upper and
lower bounds (3) compared with the upper and lower envelopes of (7) for completely random
polycrystals.

of ellipsoidal grains [9, 20] In particular, the self-consistent equation (6) forEM completely
random ellipsoidal polycrystalscan be given in the form

〈trace{Rt δσR(σe +OtLORt δσR)−1}〉O,R = 0 (7)

where δσ = diag{σ1 − σe, σ2 − σe, σ3 − σe}, L = diag{L1, L2, L3}; the depolarization
factorsLi, 1 6 i 6 3 satisfy 06 Li 6 1,

∑3
i=1Li = 1; the orientationsO andR here

are uncorrelated. The equation (5) forEM intergranularly random ellipsoidal polycrystals
having principal conductivity directions which coincide with the principal axes of the
ellipsoidal shape of the basic crystal becomes

3∑
i=1

σi − σe
σe + Li(σi − σe) = 0. (8)

At L1 = L2 = L3 = 1/3, (7) and (8) reduce to a unique equation for EM spherical
polycrystals, which is resolved explicitly in the case of a uniaxial basic crystal (σ2 = σ3)

σe = σs = 1
4[(σ 2

2 + 8σ1σ2)
1/2+ σ2]. (9)

The bounds for the polycrystals, and the envelopes of the realizable EM ellipsoidal
aggregates over all possible values of depolarization factorsL1, L2, L3 for a number of
uniaxial basic crystals are collected in table 1 and plotted in figures 1 and 2. Hereσuint
denotes the upper envelope of those effective propertiesσe determined by (8), i.e. the greatest
effective conductivity from all those of EM integranularly random ellipsoidal models with
all possible values ofL1, L2, L3; σ lint is the lower envelope of the effective properties
determined by (8) (the smallest one);σucom andσ lcom are the upper and lower envelopes of
the effective conductivitiesσe of EM completely random ellipsoidal geometries determined
by (7).

We observe that the uncertainty intervals (through comparisons of both the bounds and
the envelopes) for intergranularly random polycrystals are substantially larger than those for



Realizable effective medium intergranularly polycrystals 9733

Figure 2. Bounds and envelopes of realizable models for aggregates of uniaxial crystals:σ1

is normalized to be 1,σ2 = σ3 = 2 → 20; The upper (1) and lower (2) bounds compared
with the upper and lower envelopes of (8) for integranularly random polycrystals; the upper and
lower bounds (3) compared with the upper and lower envelopes of (7) for completely random
polycrystals.

Table 1. Bounds and envelopes of realizable models for random aggregates of uniaxial crystals
at the ranges of normalized principal conductivitiesσ1 = 1 → 20, σ2 = σ3 = 1 → 20; σuav
andσ lSACLM are the upper and lower bounds for isotropic aggregates;σuint , σ

l
int are the upper

and lower envelopes of EM intergranularly random ellipsoidal aggregates;σuP , σ lP are the upper
and lower bounds for symmetrically random polycrystals;σucom, σ lcom are the upper and lower
envelopes of EM completely random ellipsoidal aggregates;σs is the conductivity of the EM
spherical polycrystal.

σ1 σ2 = σ3 σuav σuint σ uP σucom σs σ lcom σ lP σ lint = σ lSACLM
2 1 1.333 1.306 1.282 1.282 1.281 1.279 1.279 1.236
5 1 2.33 2.08 1.91 1.88 1.85 1.84 1.78 1.53

10 1 4 3.22 2.82 2.6 2.5 2.47 2.17 1.71
20 1 7.33 5.35 4.56 3.71 3.42 3.38 2.5 1.83

1 2 1.667 1.646 1.619 1.619 1.618 1.615 1.615 1.56
1 5 3.67 3.52 3.3 3.28 3.27 3.18 3.12 2.7
1 10 7 6.62 6 5.89 5.85 5.5 4.96 4
1 20 13.67 12.8 11.35 11.01 10.92 9.73 7.28 5.84

completely random aggregates. It is interesting to see that the bound (2) coincides with the
conductivityσe of the EM intergranularly random platelet (L1 = L2 = 0, L3 = 1) aggregate
(8), for a uniaxial basic crystal. Thus, in that case, both the lower estimates for isotropic
polycrystals and the smaller class of intergranularly random aggregates are identical and
optimal (the bound is attained by a specific model). Note that the respective isotropic
optimal model of Schulgasser [4] is locally-ordered, while the platelet model (8) belongs
to the smaller but realistic class of intergranularly random polycrystals. Comparisons of
numerical results indicate that the bounds and the envelopes of realizable EM models for
intergranularly random aggregates (as well as those for the completely random ones) do
not differ much (the interval between the upper and lower bounds compared with the
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interval between the upper and lower envelopes) when the differences between the principal
conductivitiesσ1, σ2, σ3 are not large (in other words, the anisotropy of the base crystal is
not strong). Hence both the bounds and the envelopes can well approximate the uncertainty
limits for the effective behaviour of the polycrystals at those ranges of the parameters.
Similar observations have been made concerning the estimations for the overall behaviour
of quasisymmetric randomly inhomogeneous composites [19].

3. Closure

The different EM hierarchical aggregates, the effective property of which can be determined
exactly, reveal that the macroscopic conductivity of an intergranularly random (and
completely random) polycrystal should scatter over some interval unlike the random cubic
network of Kirkpatrick [2], the effective conductivity of which can be calculated and appears
unique. The theoretical results indicate that the measured values of the macroscopic property
of a random polycrystal should vary from sample to sample. Still, the scatter interval for a
property of a polycrystal may be very small due to the weak anisotropy of most practical
constituent crystals, so one can tabulate a sufficiently accurate approximate value of the
aggregate’s property for practical use. However small it was, this scatter interval is a
reality of the physical world and deserves our attention. The available bounds predict that
the scatter intervals should lie between them, but they cannot tell how small the scatter
intervals really are. The realizable geometries considered perhaps partly give the answer;
the scatter intervals are expected to be larger than those given by the envelopes of the
models. The bounds together with the envelopes should give us estimations for the scatter
intervals from both sides. It should be very desirable, but unfortunately we do not have the
available experimental data on the observed scatter intervals for polycrystals’ conductivity
to compare with the theoretical results. Some available experimental data on the elastic
constants of a number of cubic crystal aggregates collected in [21, 22] appears to fit well
the respective bounds [23]. Though the bounds and the envelopes do not differ much when
the base crystal is weakly anisotropic, they would differ much for strongly anisotropic
base crystals. In such cases it is worth looking for more refined bounds and possibly new
geometric models to narrow the bounds and to broaden the envelopes theoretically toward
each other until they converge to optimal estimates. Here we have established the optimal
lower estimate for the conductivity of intergranularly random aggregates of uniaxial crystals,
where the lower bound (2) and the lower envelope of the constructed models (8) coincide.
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